
BY DAVID McGOVERAN

The performance of on-line, distributed systems hinges on the
optimizer's intelligence in handling dissimilar queries and remote data

UNDERSTANDING
how to evaluate a re

lational DBMS query optimizer
can be a big help in estimating the
DBMS's performance capabilities.
It can also tell you a good deal
about functionality: whether the
DBMS is appropriate for ad hoc
query proces.sing, distributed data
base management, concurrent or
parallel processor exploitation,
batch and on-line transaction pro
cessing (OLTP}, on-line complex
processing (OLCP}, disk cache
management, parallel disk 1/0,
and so on. For each of these capa
bilities, the optimizer can be the
functional bottleneck. If it is un
able to select an access strategy
that uses these capabilities, their
benefits won't be fully realized.

Using the Ingres optimizer
from Ingres Corp. (formerly Rela-

tional Technology Inc.) as a model,
we'll discuss the concepts and ter
minology necessary to question a
vendor about optimizer function
ality and to determine whether
the optimizer · will meet your
needs. Not only does Ingres have a
common structure, it also imple
ments a number of techniques not
found in other products. While it
doesn't use all the techniques de
scribed here, it's a good model for
comparing and learning about
optimizers.

WHY QUERY PROCESSING?
If you've never wondered what
happens between the time you en
ter an SQL statement and the time
the results are returned, you may
be surprised to discover how
much processing takes place 'be
fore the first data access. A naive

JANUARY 1990
38

•

approach would avoid such pro
cessing, but it takes only a little re
flection to recognize how unrealis
tic that approach would be.

Suppose you enter the fol
lowing query:

SELECT TAflf_ A.CW.MLl,
TAflf _ B.CQ.lML2

F10t TAB..£_ A, TAflf _ B
Wtf.RE TABLE_A.CQ.lMLl -
TAll.LB..Cll.lML 1

In principle, this SELECT can be
processed in three steps. First, the
Cartesian product of TABLE-A
with TABLE_ B (the concatenation
of all possible ordered pairs of
rows, the first from TABLE_A and
the second from TABLE_B) is
formed. This creates an intermedi
ate result table-let's call it TA
BLE-C-that won't be saved when

a

!
t
(
[

[

t
(

l
l
l

processing is completed. The re
sulting table is then restricted to
those rows that match the WHERE
clause condition, and the desired
columns are projected.

It is useful to be able to esti
mate the size of TABLE_C quick
ly. Suppose TABLE_A has m rows
and TABLE_B has n rows, with m
greater than or equal to n. C, the
total number of rows in this table
(regardless of any restrictions that
may come up later), is bounded by
m2>= c >= n2.

If both m and n are small,
this naive approach to query pro
cessing can work. But if both are
large, TABLE_C will be extremely
large. The width w (number of
bytes in a row) of TABLE_C is the
sum of the widths of TABLE_A
and TABLE_ B. The total storage
required for TABLE_C is w*m*n.

I I I I I I I I I I I I I I I I I

For m and n equal to a mere 1,000
and each table 100 bytes wide,
TABLE_C requires 200 megabytes
of temporary storage. Modern pro
duction databases can have tables
with millions of rows, making 200
terabytes of temporary storage
possible!

Clearly, selecting a better
processing strategy is desirable, es
pecially when you realize the re
striction step could throw away all
these temporary rows. Not only
does the naive approach use a
great deal of temporary storage, it
can require large amounts of disk
1/0. It's one of the most inefficient
ways to use your resources.

PLANS AND. STRATEGIES
The basic steps in producing an
optimal processing strategy, some
times called a query execution

DATABASE PROGRAMMING & DESIGN
39

plan, are shown in Figure 1.' Se
lecting the strategy involves pars
ing and compiling the query into
an internal representation. This
abstract view of the high-level
operations (join, projection, restric
tion, sort, and so on) required to
execute the query usually takes the
form of a tree. The leaf nodes rep
resent tables; nonleaf nodes repre
sent operations (Figure 2).

Some optimizers (like Ingres)
convert the query or parse tree
into canonical form. This form is a
unique representation of all equiv
alent queries regardless of how
the query was written. Converting
to this form lets the optimizer con
sider fewer logical operations and 15
allows the queries to be compared ~
systematically. As we will see, In- ~
gres's strategy makes this an im- ~

. portant feature. !ii

I J,

!I·

;.1·
Ii

1'1

1j
I

I

I
Ii

FIGURE 1. Optimization steps.

A common practice is to use
conjunctive normal form, meaning
that ORs in the WHERE clause
contain only ANDs and ORs and
that the ORs occur only in Boolean
subexpressions (for example, (A
ORB) AND (CORD) AND() ...).
This form allows the optimizer to
recognize joins easily. An alterna
tive is to use disjunctive normal
form, which replaces ANDs with
ORs and NOTs in the WHERE
clause. This form helps the opti
mizer recognize efficient means
for keying into a relation.

I I I I I I I I I I I I I I I I I

Because SQL allows subque
ries to be nested, Ingres may also
flatten the query to a form that
uses joins instead of subqueries
wherever possible. This approach
eliminates the need to optimize
subqueries as if they were addi
tional queries.

Another step in the conver
sion to canonical form is decompo- ·
sition, the process of turning one
query into two or more simpler
queri~s. This reduction is contin
ued until irreducible parts are pro
duced. Tuple substitution and de- .

JANUARY 1990
42

tachment are two decomposition
methods. This divide-and-conquer
approach fine-tunes the optimizer
to work on a class of simple que
ries. The assumption (which has
been proven for nondistributed
database processing) is that opti
mizing these simple queries and
then summing the resource costs
from the bottom up is an optimal
strategy. Whether this theorem is
true for a distributed optimizer re
mains to be seen.

Once a query has been re
duced to canonical form, the opti
mizer chooses one or more ways to
perform the operations specified
at each node of the query tree. The
tree is generally read from the bot
tom up and left to right (Figure 3).
Each possible set of assignments of
one method to each node results
in an access plan, represented as a
tree (or query plan tree).

Two adjacent nodes can usu
ally be switched. Indeed, there
should never be an order depen
dence between the nodes of the
query plan tree. If the database al
lows for duplicates or does not
consistently eliminate them from
intermediate results, the results
will be order-dependent and not
all node orderings on the tree will
be allowed.U

The order of the nodes
(operations) is generally selected
to reduce the size of the lower
node's result. This is the optimiz
er's attempt to make intermediate
results small enough to be pro
cessed in the cache. Unfortunately, .
it also means that the number of
possible access plans the optimizer
must evaluate (called the search
space) becomes even larger.

PRUNING THE SEARCH SPACE
This explosion of the number of
access plans must be controlled.
The process of eliminating (or
never even generating) access
plans that are likely to be costly is
referred to as "pruning the search
space." The optimizer may use
heuristics to estimate the process
ing cost of the plans quickly. Plans
that will clearly result in costly
processing can be eliminated from
more detailed analysis. In fact, op
timizers have been known to rely
entirely on such estimates when
selecting an access plan.

When the search space has

been reduced as much as possible,
the access plans can be evaluated.
Evaluation involves calculating a
cost function for each node. The
idea is to estimate the resources re
quired to perform a particular op
eration. Cost functions typically
depend on the depth (number of
rows) of input tables (tables to be
accessed or on which a relational
operation is to be performed) and
on resource factors determined by
the algorithm. For example, if an
entire table must be read sequen
tially (a relation scan), the number
of disk I/Os can be estimated from
the number of rows in the table,
the size of each row, and the aver
age number of rows stored per
disk page. Given the time required
for each disk 1/0 and an estimate
of the CPU time required to pro
cess each row, the optimizer can
estimate the total processing time.

The costs of each node in an
access plan are computed from the
bottom up, left to right. This al
lows Ingres to estimate the size of
the result tables from each oper
ation so they can be rolled up into
the cost computation for the next
higher node. Ingres keeps track of
the estimated sizes of the interme
diate result tables. If the cost func
tion is linear in the number of re
sult rows or size, the cost can be
scaled for circumstances in which
the input results differ.

The computational effort in
volved in evaluating all possible
access plans can be enormous. For
this reason, optimizers such as In
gres's don't ordinarily perform an
exhaustive search even on the
pruned search space. Ingres allows
the user to set a limit on the
amount of time spent on this ef
fort. The optimizer normally stops
searching once it has spent an
amount of time equivalent to a
fraction of the lowest time cost
found for the plans evaluated so
far. Other heuristics for stopping
the search may be used as well.

Various techniques may be
used to minimize the cost of opti
mization. For example, frequently
used queries can be compiled and
a reusable access plan cached ·or
stored for them. Perhaps even
more important is how the Ingres
optimizer recognizes portions of
an access plan for which it has al
ready computed the cost functions .

I I I I I I I I I I I I I I I I I

FIGURE 2. Tree representations.

FIGURE 3. Reading an Ingres query execution plan.

This capability can eliminate a
great deal of unnecessary compu
tation. For. the time being, this
tec\mique is limited to the current
query tree. However, you should
be able to extend the scope to all
access plans in the cache or even
to a library of commonly used sub
trees. Of course, you would have
to be careful to avoid an undesir
ably large search of the library.

GENERAL FEATURES
The best way to find out about an
optimizer, short of extensive test
ing, is to ask the vendor. Charac
teristics pertain to the optimizer's
distributed capabilities and its
ability to reduce a query to canoni
cal form, flatten subqueries, and
manage optimization. While some
of these appear in the questions
that follow, a key way to charac
terize an optimizer is to look at the

DATABASE PROGRAMMING & DESIGN
43

factors that go into cost analysis.
Questions about these factms
make up the better part of the list.

0 Is the optimizer sensitive
to syntactic variations? Sensitivity
to the phrasing of an SQL query
places a burden on users con
cerned about performance. On the
other hand, it also allows the so
phisticated user to optimize the
query manually. If your applica
tion uses a fourth-generation lan
guage that generates SQL, more
complex SQL is unlikely to be op
timal Syntax sensitivity . is re
moved by converting to canonical
form or by flattening so that
phrases that are logically but not
syntactically identical are opti
mized the same way.

0 Can the optimizer perform
a semantic transformation? If a re
lational DBMS supports integrity
constraints, a query that is seman-

:I

.·

tically (as opposed to syntactically)
equivalent to another query can be
transformed automatically into the
other. This can simplify the query
in ways that canonical form and
flattening cannot, thus improving
query performance and allowing
more consistent performance for
queries that have the same mean
ing regardless of their phrasing.

0 Does the optimizer recog
nize and use transitivity on equi
joins and other logical laws? If the
WHERE clause contains the equi
joins a=b and b = c, and primary
indexes exist on a and c but not on
b, the join a -c is implied and can
be performed in the index. This is
likely to reduce the number of
rows that must be joined to b. Oth
er useful laws include DeMorgan's
(NOT(A AND B) - NOT A OR
NOT Band NOT(A OR B) = NOT
A AND NOT B) and the equiv
alence of NOT GREATER THAN
and LFSS THAN OR EQUAL TO.
Ideally, the optimizer uses these
laws so that users don't have to be
logicians.

CJ What predicates can't the
optimizer handle? For example,
various optimizers fail to optimize
predicates involving one or more
of the following: OR, UNION, IN,
BETWEEN, LIKE, NOT, NULL,
subqueries, correlated subqueries,
functions, and so on. The more of
these the optimizer supports, the
greater the power of the language
and its utility in miSsion-critical
applications.

0 Does the optimizer .have
an EXPLAIN facility? EXPLAIN al
lows the user to obtain a descrip
tion of the access plan the optimiz
er has selected for the query. This
can be extremely useful in perfor
mance optimization if the user has
some way to influence the opti
mizer. Some DBMSs provide a
means of doing this directly (for
example, sending an access plan to
the optimizer); others provide an
indirect means (modifying the
syntax of the query or modifying
indexes). Some means of influence
is necessary in production MIS
shops.

0 At what point does the
complexity of the query prove too
much for the optimizer? For exam
ple, it's not uncommon to see the
number of tables allowed in a que
ry restricted to 16. However, some

·1 1 1 1·1 1 r-r-i- r-r-r 1 r r·rr--····-"·--~-------~·--·------"-"----~--

01111m1zars use
loglcal laws so
that users need
not be logicians

optimizers give up when the num
ber of tables in a join is as few as
five or six. For OLCP and ad hoc
decision support, this shortcoming
is unacceptable.

ACCESS-METHOD SUPPORT
Optimizers are designed to elimi
nate obviously expensive access
paths. But to provide true access
method support, they should also
be able to reconstitute queries for
better performance.

0 Can the optimizer manipu
late the order of operations? As
noted earlier, the order of opera
tions can be · used to produce
smaller intermediate results. If the
optimizer doesn't attempt to com
pute or track intermediate results,
it cannot evaluate the order de
pendence of operations and the
correctness of the results could be
suspect.

0 Does the optimizer evalu
ate join methods effectively? The
cost difference between the sort
merge, index-only, and nested
loop methods can be considerable.
If the optimizer treats all joins
equally or fails to evaluate a meth
od properly, anomalous perfor
mance behavior can result.

0 Does the optimizer select
an appropriate sorting algorithm?
Eich algorithm has advantages
and disadvantages. For example, a
Quicksort becomes embarrassingly
slow when faced with data that
has ·already been sorted. If the op
timizer uses a single sorting algo
ri thm, it should be one for which
such anomalous results do not oc
cur, or the conditions that cause
anomalous results should be rec
ognized so that the algorithm isn't
applied inappropriately.

0 Can the optimizer take ad
vantage of .inter- and · intratable
clustering? It should recognize the
cost advantage of intratable clus
tering (optimizing physical stor
age order for .a single table) for
sorted retrievals or range queries.
Looking up only the minimum

JANUARY 1990
44

and maximum values in the index
is then sufficient to determine the
disk pages that must be read. Simi
larly, the optimizer should recog
nize that intertable clustering
(storing rows from two or more ta
bles together) may be advanta
geous when a primary-key join on
the clustered tables is required. It
is disadvantageous when only one
of the clustered tables· is desired.

0 Does the optimizer take
1/0 bandwidth into account? To
put it simply, not all disk drives
are created equal. Some means oi
factoring in disk-drive perfor
mance, preferably at configuration
time, is advantageous. The admin
istrator might put rotational speed,
latency, and mean transfer rate in
a table for use by the optimizer
whenever a drive or other storage
medium is added to the system.
Alternatively, the system might
monitor drive performance auto-

. matically. An extreme example is
the ineffectual use of a RAM disk
drive if treated as a standard drive
with access times measured in
milliseconds.

0 Does the optimizer evalu
ate the advantage or cost of buffer
ing? All systems have limited
buffer space. If the optimizer as
sumes effectively unlimited buffer
space, the cost estimate may be too
low due to paging. On the other
hand, if it ignores the possibility
of caching and buffer manage
ment, the estimate will be too
high. The cost function should
represent the available buffer
management algorithms.

0 Does the optimizer take
into acoount · the costs of transac
tion management, journaling, con
sistency enforcement, and concur
rency? Resource waits and setting
and resetting locks should contrib
ute to the overall costs. Statistics
such as the probability of dead
locks and average resource wait
based on the number of concur
rent users (important in OLTP and
OLCP applications) should be fac
tored in.

INDEX SUPPORT
Database designers create indexes
to save 1/0 and ·processor time. Be
cause indexes are implemented by
the optimizer, the degree to which
the optimizer meshes with various
indexing strategies is crucial.

' .

I I

' ' !

0 Does the optimizer use dif
ferent kinds of indexes effective
ly? Various indexing methods ex
ist, each with a different utility
(possibly implying a different stor
age structure). For example, a hash
index is better for single-record ac
cess, while a B-tree is better for
finding ranges of values. Indexes
can be made ineffectual by poor
optimizer evaluation, necessitating
considerable care in designing the
index to compensate for it.

0 How well does the opti
mizer recognize indexes? A re
striction can be processed concur
rently with data access using
indexes if recognizable indexes ex
ist on the columns mentioned in
the WHERE clause. An optimizer
might not always recognize the
usefulness of an index. For exam
ple, if the index is composed of
three columns and only the first
two are mentioned, the optimizer
may not recognize that the col
umns form part of an index. Opti
mizers may not recognize a col
umn as belonging to an index if
it's used in a computation or func
tion or if the column occurs in cer
tain kinds of comparisons.

0 Can the optimizer use or at
least deal with multiple indexes?
If more than one index is poten
tially useful, the optimizer may
not use any. An effective optimiz
er not only uses multip\e il}dexes
but att.empts to perform an index
join where possible . . The. idea is to
access only those pages referenced
by all relevant indexes. When the
optimizer cannot take advantage
of yet another relevartt index, it's
time to stop creating indexes.

0 Can the . optimizer auto
matically create useful indexes?
When a potentially useful index
does not exist, some optimizers
create it assuming that the cost of
creation is lower than the cost of
processing alternate plans. This is
typically a temporary index that
disappears after the statement is
processed. However, knowledge
of usage patterns may be used to
determine the cost of creating a
permanent index. Heavily used
stored procedures or repeated que
ries in a read-intensive environ
ment, for example, may benefit
from such indexes. Similarly, sort
ing or creating temporary indexes
on intermediate results can some-

I I I I I I I I I I I I I I I I I
times be beneficial. This feature
can be important in processing
very large base tables and in
OLCP, batch, and decision support
applications, where large result ta
bles are more common.

0 Can the optimizer use mul
ti table indexes? Some systems can
create a single index on the keys
in multiple tables. This mecha
nism speeds joins and can be used
to enforce referential integrity.
The optimizer should not only rec
ognize when these indexes are
useful but be able to use the index
to look up keys from either table.
If it can't, additional indexes may
be required, increasing the cost of
updates.

0 Can the optimizer respond
to user-created index and access
methods? A few relational DBMSs
let the user specify these methods
as user exits. They are useful in

JANUARY 1990
46

creating gateways or dealing with
applications with special data
(computer-aided design, for exam
ple). If the optimizer doesn't rec
ognize these methods, they are of
little use where performance is
important.

0 Are nulls supported? Some
optimizers refuse to use any index
(not just the primary-key index)
on a column that can contain
nulls. Others cannot optimize a re
striction that involves nulls (in
other words, IS NULL and IS NOT
NULL).

STATISTICS
The optimizer uses statistics to es
timate the number of I/0 opera
tions required for each possible ac
cess path. The statistics describe
the tables to be searched in formu
las specific to the type of search
required.

D Is the optimizer sensitive
to table and index statistics? A ta
ble's cardinality (number of dis
tinct rows) and maximum, mini
mum, and average column values
are likewise useful for heuristic
measures. Other factors include
the average number of rows per
page, number of pages per rela
tion, percent of total pages, and
number of index pages. For an in
dex, selectivity is important. This
is the number of entries in the ta
ble for each entry in the index.
Some statistical optimizers rely en
tirely on these statistics.

D Does the optimizer keep
track of data value distributions?
Ingres maintains fairly sophisticat
ed statistics about the distribution
of data values in a table, allowing
the optimizer to analyze the num
ber of disk I/Os required to meet
a restriction. If the optimizer as
sumes a flat distribution of values
across all pages and the distribu
tion is skewed or multimodal, the
number of pages required to access
values can be quite different from
the estimate.

D Can the optimizer estimate
the number of disk pages that
must be accessed? If not, the cost
of disk I/0 cannot be computed.
Such optimizers typically use a
cost index rather than a cost func
tion. A cost index is a numeric val
ue given to a particular operation
regardless of the amount of data
that must be processed. The sum
may then be scaled according to
the amount of data. The result is
optimization based on gross statis
tical or theoretical assumptions.
This is similar to measuring the
health of the U.S. economy based
on the Dow Jones industrials in
stead of computing the GNP, the
trade deficit, and inflation.

D How does the optimizer
update statistics? Updating can be
continuous, automatic, manual, on
a scheduled interval, ·or by trigger
(for example, when new extents
are allocated and new indexes are
created). The most desirable ap
proach depends on usage patterns
and data value distribution.

D How costly is it to obtain
statistics from the database? When
a database is very large, the cost of
updating the statistics can become
exorbitant. One solution is to pro
duce the statistics by sampling the

fl -Ill 1·r·1111111111

Up-to-date
statistics are
critical for

performance in a
distributed DBMS
data. A variation is to generate the
statistics from a sample or test
database. Similarly, statistics can
be updated continuously, either
for all activity or on a random
sampling basis. Up-to-date statis
tics are critical for performance in
a distributed DBMS.

EFFICIENCY FEATURES
The optimizer must use storage in
telligently to prevent the DBMS
from monopolizing computer re
sources. These features can also
improve flexibility when handling
different kinds of procedures.

D Can access plans be saved
or cached? Caching eliminates the
overhead of generating an access
plan when an application uses a
query repeatedly. Similarly, data
base procedures generate access
plans that are stored in the data
base on the first invocation. The
optimizer should provide a way to
check the validity of stored or
cached plans and be able to regen
erate a plan automatically.

D Can the optimizer recog
nize and use parts of an existing
plan? It might maintain a cache of
the plans it recently executed. If a
new plan needs to be selected, the
optimizer can try to find an exist
ing equivalent plan. Failing this, it
should look for parts of the plan
that have already been computed
and optimized.

D Does the optimizer recog
nize invalid plans or partial plans?
Changes to the statistics or the
database schema can invalidate a
plan (or partial plan). Likewise, a
minor variation on a plan or par
tial plan can be ·invalid (for exam
ple, substituting a wildcard for a
constant in a Boolean comparison
predicate).

D Can both statements and
transactions be optimized? If the
optimizer can look ahead and see
all the statements that make up a
transaction (as may be-the case in a

DATABASE PROGRAMMING & DESIGN
47

database or stored procedure), it
may be able to cache intermediate
results for use later in the transac
tion. It may also be possible to
minimize the amount of disk I/0
by scanning a clustered table even
though some of the data will be
used only by later statements in
the transaction.

Al FEATURES
Optimizers are often called the
"intelligence" of the DBMS, but
not all of them take full advantage
of the latest artificial-intelligence
technology.

D Does the optimizer use
heuristics to eliminate plans? Dur
ing cost-function evaluation, heu
ristics can be used to terminate
evaluation of the entire plan.
These techniques allow optimizer
time to be spent examining poten
tially more useful plans.

D Can the optimizer learn?
In some sense, an optimizer learns
if it collects and responds to statis
tics. However, additional forms of
learning are possible. For example,
usage patterns can be used to dic
tate the spread of data across de
vices or even across data pages.
The frequency and quantity of up
dates can dictate the optimal ex
tent size for allocating new pages.
Frequent access of a column can
lead to automatic creation of in
dexes. Automatic reorganization of
data is possible when a particular
order is common or fragmentation
exceeds a cost threshold.

DISTRIBUTED SUPPORT
Less centralized data, network
considerations, and proliferating
access paths for incoming queries
will all become factors in the per
formance of a DBMS's optimizer.
Distributed systems will tax the
optimizer's ability to determine
(and allocate) the costs of access
ing data.

D Can the optimizer com
pute distributed cost functions?
When data is distributed, factors
such as routing of the retrieved
data, network bandwidth, node
CPU speed, and possible concur
rent or parallel processing of the
decomposed query all become im
portant in computing costs. These
factors as well as the normal local
statistics must be available to the
global optimizer: How the . factors

'' : i

.I
I ,

are migrated from the local data
base to the global optimizer is also
important (for example, by manual
or automatic update, on demand,
or on an event such as storage
space allocation).

0 Is the optimization local,
global, or both? Even if the opti
mizer performs global optimiza
tion in a distributed environment,
it should still handle local queries
and not depend on an access plan
dictated by the global phase.

D Can the user determine a
global optimizer's access to local
statistics? For example, can the
propagation of statistics from var
ious nodes be managed so that
they occur manually, on demand,
or on schedule? Remember, global
optimization requires information
not only on where data resides
and how best to route the neces
sary data to the user, but also
about how to prepare that data for
distributed access in the first place.

0 Can the optimizer evalu
ate parallel I/0? If the relational
DBMS supports fragmentation and
replication, the optimizer might
be able to use multiple disk drives
and controllers to process the re
sults in parallel. Both Tandem
Non-Stop SQL and Teradata's Ter
adata DBC/1012 can access data
this way.

0 Can the optimizer take ad
vantage of parallel processing? In
a distributed system, the portions·
of a query that are processed in
parallel and those that must be
processed sequentially can signifi
cantly affect processing cost. If the
optimizer doesn't model the sys
tem properly, parallel processing
can be more costly than sequential
processing on a uniprocessor
machine.

D Does the optimizer com
pute the cost of semijoins? The se
mijoin is an effective means of
joining distributed data when net
work costs are significant. Semi
joins should not have the same
cost evaluation as joins.

THE INGRES OPTIMIZER
As noted earlier, the Ingres opti
mizer uses a number of the tech
niques presented here. Consider
able effort has gone into ensuring
that the query tree is represented
in canonical form and that SQL is
flattened. This is not as simple as it

might appear. The point at which
the optimizer decides to remove
duplicates can introduce an order
dependence on operations, so go
ing to a flattened or normal form
of the query can affect the query
result.1.2.4 According to Ingres, all
such flattening issues have been
resolved in the current release.

Ingres attempts to reduce a
query to irreducible, simpler que
ries by decomposition (not to be
confused with the less sophisticat
ed optimization-by-decomposition
method used by the University of
California, Berkeley, version of In
gres10). It does this by using tuple
substitution and detachment be
fore the access methods are select
ed and the search space is defined.

Ingres uses various tech
niques to limit the primitive
operations and access methods
used to define possible access
plans; these include eliminating
redundant nodes, recognizing re
dundant subtrees in· the search
space, and eliminating plans in
volving subtrees that (heuristical
ly) are estimated to be too costly.
For example, if a plan involves a
Cartesian product of very large ta
bles and alternate plans are avail
able that do not, these can general
ly be eliminated; if a relation
contains fewer than five pages, In
gres will select a relation scan
rather than use any primary or
secondary indexes.

A set of heuristics constrains
the kinds of plans generated based
on the operations in the query tree
and the indexes available. Among
the access methods considered are
indirect join, semijoin, full and
partial sort-merge joins, index join,
hashed join, Cartesian product,
projection-restriction, primary key
lookup, secondary index lookup,
subquery join, check-only join, re
lation scan, sort and ISAM, hash,
or B-tree lookup. Whether or not
journaling is in effect on the ta
bles, the cost function takes into
account the storage structure be
ing used (B-tree, ISAM, hashed, or
heap), disk I/0, CPU usage, and a
CPU merge factor that can differ
from CPU to CPU. These help the
optimizer decide between sort
merge and lookup.

The time spent evaluating
the search space is controlled so
that no further search will occur if

JANUARY 1990
48

the optimizer ''believes" the plan
it has found would take less time
to execute than the time it has tak
en to look for the plan. The user
may also turn off this feature and
enable an exhaustive search.

Many statistics are available
to the optimizer for computing
cost functions. The statistics are
collected by running Optimizedb.
This utility maintains information
on data values such as minimum,
maximum, and average as well as
number of distinct values, rows,
disk pages, rows per page, and so
on. It also allows the user to estab
lish, via a histogram, the distribu
tion of values.

The histogram consists of
partitions, each with a width de
termined by the range of values.
The height of each partition is
simply the number of rows con
taining values in the range. The
user may set both the number of
partitions and the width before
collecting the statistics. In the cur
rent release, Ingres can collect this
information by sampling the data
in a table rather than scanning it.
This can significantly reduce the
cost of collecting statistiq; on deep
tables.

The Ingres optimizer does
not create indexes on intermediate
results, nor does it create a histo
gram. It does follow certain heu
ristic rules that allow it to make
statistical assumptions about inter
mediate results given the input ta
bles and the operations involved.
Ingres also does not fully optimize
UNION. However, its optimiz
ation of OR compares favorably to
most other optimizers.

Recent improvements to the
optimizer include removing un
necessary nodes in processing
sort-merge joins, optimizing func
tions, adding multiple-attribute
joins, and taking into account im
provements to the buffer manager.

Ingres refers to its product as
an "AI optimizer'' because of its
extensive use of heuristics and
statistics. It is, in a sense, an expert
system. Its recognition of opti
mized subtrees might be consid
ered a form of pattern recognition.
However, it is not an artificial
intelligence system in the sense
that it learns or creates new rules
based on an inference engine.

All the optimal subtrees and·

plans produced are cached using
a least-recently-used algorithm.
They may be kicked out of the
cache if they no longer constitute
a valid plan. For example, drop
ping an index might well invali
date a plan in the cache. Database
procedures are stored as a linked
query execution plan and can be
invalidated. Ordinarily, a partial
plan analysis is performed to de
termine whether database changes
or the parameters being passed
might invalidate the plan. For ex
ample, passing a wildcard rather

I I I I I I I I I I I I I I I I I
REFERENCES

I. Codd, E. F. "Fatal Flaws in SQL (Part
l)," Datamation 34(16): 45-48, Aug. 1988.

2. Codd, E. F. "Fatal Flaws in SQL (Part
2)," Datamation 34{17): 71-74, Sept. 1988.

3. Date, C. J. An Introduction lo D11tabase
Syslems. Reading, Mass.: Addison-Wesley,
1986.

4. Date, C. J. "Be Careful with SQL
EXISTS!" DATABASE PROCRAMMING &
DESIGN 2(9): 50-52, Sept. 1989.

5. Kellogg, D. Undmlonding Query Opti
mizers. Relational Technology Technical
Report, July 1989.

6. Kim, W., D. Reiner, and D. Batory, eds.
Query Processing in Database Systems. W. Ber
lin, W. Germany: Springer Verlag, 1985.

7. Kooi, R. "The Optimization of Queries

in Relational Databases." Ph.D. d isserta
tion. Case Western R~rve University,
Sept. 1980.

8. Stonebraker, M., ed. Re11ding in D11ra
b11se Systems. San Mateo, Calif.: Morgan
Kauffman Publishers, 1988.

9. Wiorkowski, G., and D. Kull. "The
Optimizer: Invisible Hand of the DBMS,"
DATABASE PROCRAMMING & DESIGN
1(9): 26-33, Sept. 1988.

10. Wong, E., and K. Youssefi. ''Decom·
position-A Strategy for Query Process
ing," ACM TODS 1(3), Sept. 1976.

David McGoveran I• president of Alterna
tive TechnologiH In Santa Cruz, Calif!., a
conaultlng firm apeciailizing in relational
databue applicationa.

than a constant value into a Bool- 1---------- - ------'------ ---------.....J
ean comparison can mean that an
index is no longer viable. In this
case, the invalidation is tempor.ary.

The Ingres optimizer is capa
ble of performing global as well as
local optimization. The task of glo
bal optimization is to determine
on what node a partial plan will
be executed. Therefore, network
costs must be taken into account
when the cost functions for access
ing base tables or indexes are com
puted and when the results of an
operation on one node are sup
plied as input to an operation on
another node.

The Optimiz~db utility is
used to update statistics locally.
Global optimization is performed
by the Ingres Star node. The Star
node obtains these statistics auto
matically from the local node on
demand, caching them until Opti
mizedb is run again. The Star node
sends partial SQL plans to the lo
cal nodes for processing, where

· they undergo local optimization.

RETURN ON INVESTMENT
The selection of a relational DBMS
may in part be contingent on the
optimizer. Balancing the overall
capabilities of the optimizer, the
need for performance, and other
desirable features of the DBMS is a
technical problem. And the more
you know about how databases
work, the more difficult DBMS se
lection can be. Still, the effort is
worthwhile if it leads to a success
ful installation that provides a
continuing return on investment
over the years and doesn't frus-
trate users and developers. •

Tlit 11uthor would likt to 11cknouiltdgt lht help
of Dow Kellogg, Eric Lundb/1111. and Ed Horsl ·
of Ingres Corp.

THE NATIONAL. DATABASE "EXPOSITION AND CONFERENCE

.DATABAS~S;:~·TOOLS':tAND}. CONNECTIVITY-i
MARCH 27-29, 1990 • MOSCON~ CONVENTION.CENTER• SAN FRANCISCO, CA '

CIRCLE 19 ON READER SERVICE CARD

DATABASE PROGRAMMING & DESIGN
49

