
BY DAVID McGOVERAN 

The performance of on-line, distributed systems hinges on the 
optimizer's intelligence in handling dissimilar queries and remote data 

UNDERSTANDING 
how to evaluate a re­

lational DBMS query optimizer 
can be a big help in estimating the 
DBMS's performance capabilities. 
It can also tell you a good deal 
about functionality: whether the 
DBMS is appropriate for ad hoc 
query proces.sing, distributed data­
base management, concurrent or 
parallel processor exploitation, 
batch and on-line transaction pro­
cessing (OLTP}, on-line complex 
processing (OLCP}, disk cache 
management, parallel disk 1/0, 
and so on. For each of these capa­
bilities, the optimizer can be the 
functional bottleneck. If it is un­
able to select an access strategy 
that uses these capabilities, their 
benefits won't be fully realized. 

Using the Ingres optimizer 
from Ingres Corp. (formerly Rela-

tional Technology Inc.) as a model, 
we'll discuss the concepts and ter­
minology necessary to question a 
vendor about optimizer function­
ality and to determine whether 
the optimizer · will meet your 
needs. Not only does Ingres have a 
common structure, it also imple­
ments a number of techniques not 
found in other products. While it 
doesn't use all the techniques de­
scribed here, it's a good model for 
comparing and learning about 
optimizers. 

WHY QUERY PROCESSING? 
If you've never wondered what 
happens between the time you en­
ter an SQL statement and the time 
the results are returned, you may 
be surprised to discover how 
much processing takes place 'be­
fore the first data access. A naive 
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approach would avoid such pro­
cessing, but it takes only a little re­
flection to recognize how unrealis­
tic that approach would be. 

Suppose you enter the fol­
lowing query: 

SELECT TAflf_ A.CW.MLl, 
TAflf _ B.CQ.lML2 

F10t TAB..£_ A, TAflf _ B 
Wtf.RE TABLE_A.CQ.lMLl -
TAll.LB..Cll.lML 1 

In principle, this SELECT can be 
processed in three steps. First, the 
Cartesian product of TABLE-A 
with TABLE_ B (the concatenation 
of all possible ordered pairs of 
rows, the first from TABLE_A and 
the second from TABLE_B) is 
formed. This creates an intermedi­
ate result table-let's call it TA­
BLE-C-that won't be saved when 
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processing is completed. The re­
sulting table is then restricted to 
those rows that match the WHERE 
clause condition, and the desired 
columns are projected. 

It is useful to be able to esti­
mate the size of TABLE_C quick­
ly. Suppose TABLE_A has m rows 
and TABLE_B has n rows, with m 
greater than or equal to n. C, the 
total number of rows in this table 
(regardless of any restrictions that 
may come up later), is bounded by 
m2>= c >= n2. 

If both m and n are small, 
this naive approach to query pro­
cessing can work. But if both are 
large, TABLE_C will be extremely 
large. The width w (number of 
bytes in a row) of TABLE_C is the 
sum of the widths of TABLE_A 
and TABLE_ B. The total storage 
required for TABLE_C is w*m*n. 
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For m and n equal to a mere 1,000 
and each table 100 bytes wide, 
TABLE_C requires 200 megabytes 
of temporary storage. Modern pro­
duction databases can have tables 
with millions of rows, making 200 
terabytes of temporary storage 
possible! 

Clearly, selecting a better 
processing strategy is desirable, es­
pecially when you realize the re­
striction step could throw away all 
these temporary rows. Not only 
does the naive approach use a 
great deal of temporary storage, it 
can require large amounts of disk 
1/0. It's one of the most inefficient 
ways to use your resources. 

PLANS AND. STRATEGIES 
The basic steps in producing an 
optimal processing strategy, some­
times called a query execution 
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plan, are shown in Figure 1.' Se­
lecting the strategy involves pars­
ing and compiling the query into 
an internal representation. This 
abstract view of the high-level 
operations (join, projection, restric­
tion, sort, and so on) required to 
execute the query usually takes the 
form of a tree. The leaf nodes rep­
resent tables; nonleaf nodes repre­
sent operations (Figure 2). 

Some optimizers (like Ingres) 
convert the query or parse tree 
into canonical form. This form is a 
unique representation of all equiv­
alent queries regardless of how 
the query was written. Converting 
to this form lets the optimizer con­
sider fewer logical operations and 15 
allows the queries to be compared ~ 
systematically. As we will see, In- ~ 
gres's strategy makes this an im- ~ 

. portant feature. !ii 
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FIGURE 1. Optimization steps. 

A common practice is to use 
conjunctive normal form, meaning 
that ORs in the WHERE clause 
contain only ANDs and ORs and 
that the ORs occur only in Boolean 
subexpressions (for example, (A 
ORB) AND (CORD) AND() ... ). 
This form allows the optimizer to 
recognize joins easily. An alterna­
tive is to use disjunctive normal 
form, which replaces ANDs with 
ORs and NOTs in the WHERE 
clause. This form helps the opti­
mizer recognize efficient means 
for keying into a relation. 
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Because SQL allows subque­
ries to be nested, Ingres may also 
flatten the query to a form that 
uses joins instead of subqueries 
wherever possible. This approach 
eliminates the need to optimize 
subqueries as if they were addi­
tional queries. 

Another step in the conver­
sion to canonical form is decompo- · 
sition, the process of turning one 
query into two or more simpler 
queri~s. This reduction is contin­
ued until irreducible parts are pro­
duced. Tuple substitution and de- . 
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tachment are two decomposition 
methods. This divide-and-conquer 
approach fine-tunes the optimizer 
to work on a class of simple que­
ries. The assumption (which has 
been proven for nondistributed­
database processing) is that opti­
mizing these simple queries and 
then summing the resource costs 
from the bottom up is an optimal 
strategy. Whether this theorem is 
true for a distributed optimizer re­
mains to be seen. 

Once a query has been re­
duced to canonical form, the opti­
mizer chooses one or more ways to 
perform the operations specified 
at each node of the query tree. The 
tree is generally read from the bot­
tom up and left to right (Figure 3). 
Each possible set of assignments of 
one method to each node results 
in an access plan, represented as a 
tree (or query plan tree). 

Two adjacent nodes can usu­
ally be switched. Indeed, there 
should never be an order depen­
dence between the nodes of the 
query plan tree. If the database al­
lows for duplicates or does not 
consistently eliminate them from 
intermediate results, the results 
will be order-dependent and not 
all node orderings on the tree will 
be allowed.U 

The order of the nodes 
(operations) is generally selected 
to reduce the size of the lower 
node's result. This is the optimiz­
er's attempt to make intermediate 
results small enough to be pro­
cessed in the cache. Unfortunately, . 
it also means that the number of 
possible access plans the optimizer 
must evaluate (called the search 
space) becomes even larger. 

PRUNING THE SEARCH SPACE 
This explosion of the number of 
access plans must be controlled. 
The process of eliminating (or 
never even generating) access 
plans that are likely to be costly is 
referred to as "pruning the search 
space." The optimizer may use 
heuristics to estimate the process­
ing cost of the plans quickly. Plans 
that will clearly result in costly 
processing can be eliminated from 
more detailed analysis. In fact, op­
timizers have been known to rely 
entirely on such estimates when 
selecting an access plan. 

When the search space has 



been reduced as much as possible, 
the access plans can be evaluated. 
Evaluation involves calculating a 
cost function for each node. The 
idea is to estimate the resources re­
quired to perform a particular op­
eration. Cost functions typically 
depend on the depth (number of 
rows) of input tables (tables to be 
accessed or on which a relational 
operation is to be performed) and 
on resource factors determined by 
the algorithm. For example, if an 
entire table must be read sequen­
tially (a relation scan), the number 
of disk I/Os can be estimated from 
the number of rows in the table, 
the size of each row, and the aver­
age number of rows stored per 
disk page. Given the time required 
for each disk 1/0 and an estimate 
of the CPU time required to pro­
cess each row, the optimizer can 
estimate the total processing time. 

The costs of each node in an 
access plan are computed from the 
bottom up, left to right. This al­
lows Ingres to estimate the size of 
the result tables from each oper­
ation so they can be rolled up into 
the cost computation for the next 
higher node. Ingres keeps track of 
the estimated sizes of the interme­
diate result tables. If the cost func­
tion is linear in the number of re­
sult rows or size, the cost can be 
scaled for circumstances in which 
the input results differ. 

The computational effort in­
volved in evaluating all possible 
access plans can be enormous. For 
this reason, optimizers such as In­
gres's don't ordinarily perform an 
exhaustive search even on the 
pruned search space. Ingres allows 
the user to set a limit on the 
amount of time spent on this ef­
fort. The optimizer normally stops 
searching once it has spent an 
amount of time equivalent to a 
fraction of the lowest time cost 
found for the plans evaluated so 
far. Other heuristics for stopping 
the search may be used as well. 

Various techniques may be 
used to minimize the cost of opti­
mization. For example, frequently 
used queries can be compiled and 
a reusable access plan cached ·or 
stored for them. Perhaps even 
more important is how the Ingres 
optimizer recognizes portions of 
an access plan for which it has al­
ready computed the cost functions . 
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FIGURE 2. Tree representations. 

FIGURE 3. Reading an Ingres query execution plan. 

This capability can eliminate a 
great deal of unnecessary compu­
tation. For. the time being, this 
tec\mique is limited to the current 
query tree. However, you should 
be able to extend the scope to all 
access plans in the cache or even 
to a library of commonly used sub­
trees. Of course, you would have 
to be careful to avoid an undesir­
ably large search of the library. 

GENERAL FEATURES 
The best way to find out about an 
optimizer, short of extensive test­
ing, is to ask the vendor. Charac­
teristics pertain to the optimizer's 
distributed capabilities and its 
ability to reduce a query to canoni­
cal form, flatten subqueries, and 
manage optimization. While some 
of these appear in the questions 
that follow, a key way to charac­
terize an optimizer is to look at the 
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factors that go into cost analysis. 
Questions about these factms 
make up the better part of the list. 

0 Is the optimizer sensitive 
to syntactic variations? Sensitivity 
to the phrasing of an SQL query 
places a burden on users con­
cerned about performance. On the 
other hand, it also allows the so­
phisticated user to optimize the 
query manually. If your applica­
tion uses a fourth-generation lan­
guage that generates SQL, more 
complex SQL is unlikely to be op­
timal Syntax sensitivity . is re­
moved by converting to canonical 
form or by flattening so that 
phrases that are logically but not 
syntactically identical are opti­
mized the same way. 

0 Can the optimizer perform 
a semantic transformation? If a re­
lational DBMS supports integrity 
constraints, a query that is seman-
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tically (as opposed to syntactically) 
equivalent to another query can be 
transformed automatically into the 
other. This can simplify the query 
in ways that canonical form and 
flattening cannot, thus improving 
query performance and allowing 
more consistent performance for 
queries that have the same mean­
ing regardless of their phrasing. 

0 Does the optimizer recog­
nize and use transitivity on equi­
joins and other logical laws? If the 
WHERE clause contains the equi­
joins a=b and b = c, and primary 
indexes exist on a and c but not on 
b, the join a -c is implied and can 
be performed in the index. This is 
likely to reduce the number of 
rows that must be joined to b. Oth­
er useful laws include DeMorgan's 
(NOT(A AND B) - NOT A OR 
NOT Band NOT( A OR B) = NOT 
A AND NOT B) and the equiv­
alence of NOT GREATER THAN 
and LFSS THAN OR EQUAL TO. 
Ideally, the optimizer uses these 
laws so that users don't have to be 
logicians. 

CJ What predicates can't the 
optimizer handle? For example, 
various optimizers fail to optimize 
predicates involving one or more 
of the following: OR, UNION, IN, 
BETWEEN, LIKE, NOT, NULL, 
subqueries, correlated subqueries, 
functions, and so on. The more of 
these the optimizer supports, the 
greater the power of the language 
and its utility in miSsion-critical 
applications. 

0 Does the optimizer .have 
an EXPLAIN facility? EXPLAIN al­
lows the user to obtain a descrip­
tion of the access plan the optimiz­
er has selected for the query. This 
can be extremely useful in perfor­
mance optimization if the user has 
some way to influence the opti­
mizer. Some DBMSs provide a 
means of doing this directly (for 
example, sending an access plan to 
the optimizer); others provide an 
indirect means (modifying the 
syntax of the query or modifying 
indexes). Some means of influence 
is necessary in production MIS 
shops. 

0 At what point does the 
complexity of the query prove too 
much for the optimizer? For exam­
ple, it's not uncommon to see the 
number of tables allowed in a que­
ry restricted to 16. However, some 
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loglcal laws so 
that users need 
not be logicians 

optimizers give up when the num­
ber of tables in a join is as few as 
five or six. For OLCP and ad hoc 
decision support, this shortcoming 
is unacceptable. 

ACCESS-METHOD SUPPORT 
Optimizers are designed to elimi­
nate obviously expensive access 
paths. But to provide true access­
method support, they should also 
be able to reconstitute queries for 
better performance. 

0 Can the optimizer manipu­
late the order of operations? As 
noted earlier, the order of opera­
tions can be · used to produce 
smaller intermediate results. If the 
optimizer doesn't attempt to com­
pute or track intermediate results, 
it cannot evaluate the order de­
pendence of operations and the 
correctness of the results could be 
suspect. 

0 Does the optimizer evalu­
ate join methods effectively? The 
cost difference between the sort­
merge, index-only, and nested­
loop methods can be considerable. 
If the optimizer treats all joins 
equally or fails to evaluate a meth­
od properly, anomalous perfor­
mance behavior can result. 

0 Does the optimizer select 
an appropriate sorting algorithm? 
Eich algorithm has advantages 
and disadvantages. For example, a 
Quicksort becomes embarrassingly 
slow when faced with data that 
has ·already been sorted. If the op­
timizer uses a single sorting algo­
ri thm, it should be one for which 
such anomalous results do not oc­
cur, or the conditions that cause 
anomalous results should be rec­
ognized so that the algorithm isn't 
applied inappropriately. 

0 Can the optimizer take ad­
vantage of .inter- and · intratable 
clustering? It should recognize the 
cost advantage of intratable clus­
tering (optimizing physical stor­
age order for .a single table) for 
sorted retrievals or range queries. 
Looking up only the minimum 
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and maximum values in the index 
is then sufficient to determine the 
disk pages that must be read. Simi­
larly, the optimizer should recog­
nize that intertable clustering 
(storing rows from two or more ta­
bles together) may be advanta­
geous when a primary-key join on 
the clustered tables is required. It 
is disadvantageous when only one 
of the clustered tables· is desired. 

0 Does the optimizer take 
1/0 bandwidth into account? To 
put it simply, not all disk drives 
are created equal. Some means oi 
factoring in disk-drive perfor­
mance, preferably at configuration 
time, is advantageous. The admin­
istrator might put rotational speed, 
latency, and mean transfer rate in 
a table for use by the optimizer 
whenever a drive or other storage 
medium is added to the system. 
Alternatively, the system might 
monitor drive performance auto-

. matically. An extreme example is 
the ineffectual use of a RAM disk 
drive if treated as a standard drive 
with access times measured in 
milliseconds. 

0 Does the optimizer evalu­
ate the advantage or cost of buffer­
ing? All systems have limited 
buffer space. If the optimizer as­
sumes effectively unlimited buffer 
space, the cost estimate may be too 
low due to paging. On the other 
hand, if it ignores the possibility 
of caching and buffer manage­
ment, the estimate will be too 
high. The cost function should 
represent the available buffer­
management algorithms. 

0 Does the optimizer take 
into acoount · the costs of transac­
tion management, journaling, con­
sistency enforcement, and concur­
rency? Resource waits and setting 
and resetting locks should contrib­
ute to the overall costs. Statistics 
such as the probability of dead­
locks and average resource wait 
based on the number of concur­
rent users (important in OLTP and 
OLCP applications) should be fac­
tored in. 

INDEX SUPPORT 
Database designers create indexes 
to save 1/0 and ·processor time. Be­
cause indexes are implemented by 
the optimizer, the degree to which 
the optimizer meshes with various 
indexing strategies is crucial. 
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0 Does the optimizer use dif­
ferent kinds of indexes effective­
ly? Various indexing methods ex­
ist, each with a different utility 
(possibly implying a different stor­
age structure). For example, a hash 
index is better for single-record ac­
cess, while a B-tree is better for 
finding ranges of values. Indexes 
can be made ineffectual by poor 
optimizer evaluation, necessitating 
considerable care in designing the 
index to compensate for it. 

0 How well does the opti­
mizer recognize indexes? A re­
striction can be processed concur­
rently with data access using 
indexes if recognizable indexes ex­
ist on the columns mentioned in 
the WHERE clause. An optimizer 
might not always recognize the 
usefulness of an index. For exam­
ple, if the index is composed of 
three columns and only the first 
two are mentioned, the optimizer 
may not recognize that the col­
umns form part of an index. Opti­
mizers may not recognize a col­
umn as belonging to an index if 
it's used in a computation or func­
tion or if the column occurs in cer­
tain kinds of comparisons. 

0 Can the optimizer use or at 
least deal with multiple indexes? 
If more than one index is poten­
tially useful, the optimizer may 
not use any. An effective optimiz­
er not only uses multip\e il}dexes 
but att.empts to perform an index 
join where possible . . The. idea is to 
access only those pages referenced 
by all relevant indexes. When the 
optimizer cannot take advantage 
of yet another relevartt index, it's 
time to stop creating indexes. 

0 Can the . optimizer auto­
matically create useful indexes? 
When a potentially useful index 
does not exist, some optimizers 
create it assuming that the cost of 
creation is lower than the cost of 
processing alternate plans. This is 
typically a temporary index that 
disappears after the statement is 
processed. However, knowledge 
of usage patterns may be used to 
determine the cost of creating a 
permanent index. Heavily used 
stored procedures or repeated que­
ries in a read-intensive environ­
ment, for example, may benefit 
from such indexes. Similarly, sort­
ing or creating temporary indexes 
on intermediate results can some-
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times be beneficial. This feature 
can be important in processing 
very large base tables and in 
OLCP, batch, and decision support 
applications, where large result ta­
bles are more common. 

0 Can the optimizer use mul­
ti table indexes? Some systems can 
create a single index on the keys 
in multiple tables. This mecha­
nism speeds joins and can be used 
to enforce referential integrity. 
The optimizer should not only rec­
ognize when these indexes are 
useful but be able to use the index 
to look up keys from either table. 
If it can't, additional indexes may 
be required, increasing the cost of 
updates. 

0 Can the optimizer respond 
to user-created index and access 
methods? A few relational DBMSs 
let the user specify these methods 
as user exits. They are useful in 
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creating gateways or dealing with 
applications with special data 
(computer-aided design, for exam­
ple). If the optimizer doesn't rec­
ognize these methods, they are of 
little use where performance is 
important. 

0 Are nulls supported? Some 
optimizers refuse to use any index 
(not just the primary-key index) 
on a column that can contain 
nulls. Others cannot optimize a re­
striction that involves nulls (in 
other words, IS NULL and IS NOT 
NULL). 

STATISTICS 
The optimizer uses statistics to es­
timate the number of I/0 opera­
tions required for each possible ac­
cess path. The statistics describe 
the tables to be searched in formu­
las specific to the type of search 
required. 



D Is the optimizer sensitive 
to table and index statistics? A ta­
ble's cardinality (number of dis­
tinct rows) and maximum, mini­
mum, and average column values 
are likewise useful for heuristic 
measures. Other factors include 
the average number of rows per 
page, number of pages per rela­
tion, percent of total pages, and 
number of index pages. For an in­
dex, selectivity is important. This 
is the number of entries in the ta­
ble for each entry in the index. 
Some statistical optimizers rely en­
tirely on these statistics. 

D Does the optimizer keep 
track of data value distributions? 
Ingres maintains fairly sophisticat­
ed statistics about the distribution 
of data values in a table, allowing 
the optimizer to analyze the num­
ber of disk I/Os required to meet 
a restriction. If the optimizer as­
sumes a flat distribution of values 
across all pages and the distribu­
tion is skewed or multimodal, the 
number of pages required to access 
values can be quite different from 
the estimate. 

D Can the optimizer estimate 
the number of disk pages that 
must be accessed? If not, the cost 
of disk I/0 cannot be computed. 
Such optimizers typically use a 
cost index rather than a cost func­
tion. A cost index is a numeric val­
ue given to a particular operation 
regardless of the amount of data 
that must be processed. The sum 
may then be scaled according to 
the amount of data. The result is 
optimization based on gross statis­
tical or theoretical assumptions. 
This is similar to measuring the 
health of the U.S. economy based 
on the Dow Jones industrials in­
stead of computing the GNP, the 
trade deficit, and inflation. 

D How does the optimizer 
update statistics? Updating can be 
continuous, automatic, manual, on 
a scheduled interval, ·or by trigger 
(for example, when new extents 
are allocated and new indexes are 
created). The most desirable ap­
proach depends on usage patterns 
and data value distribution. 

D How costly is it to obtain 
statistics from the database? When 
a database is very large, the cost of 
updating the statistics can become 
exorbitant. One solution is to pro­
duce the statistics by sampling the 
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Up-to-date 
statistics are 
critical for 

performance in a 
distributed DBMS 
data. A variation is to generate the 
statistics from a sample or test 
database. Similarly, statistics can 
be updated continuously, either 
for all activity or on a random­
sampling basis. Up-to-date statis­
tics are critical for performance in 
a distributed DBMS. 

EFFICIENCY FEATURES 
The optimizer must use storage in­
telligently to prevent the DBMS 
from monopolizing computer re­
sources. These features can also 
improve flexibility when handling 
different kinds of procedures. 

D Can access plans be saved 
or cached? Caching eliminates the 
overhead of generating an access 
plan when an application uses a 
query repeatedly. Similarly, data­
base procedures generate access 
plans that are stored in the data­
base on the first invocation. The 
optimizer should provide a way to 
check the validity of stored or 
cached plans and be able to regen­
erate a plan automatically. 

D Can the optimizer recog­
nize and use parts of an existing 
plan? It might maintain a cache of 
the plans it recently executed. If a 
new plan needs to be selected, the 
optimizer can try to find an exist­
ing equivalent plan. Failing this, it 
should look for parts of the plan 
that have already been computed 
and optimized. 

D Does the optimizer recog­
nize invalid plans or partial plans? 
Changes to the statistics or the 
database schema can invalidate a 
plan (or partial plan). Likewise, a 
minor variation on a plan or par­
tial plan can be ·invalid (for exam­
ple, substituting a wildcard for a 
constant in a Boolean comparison 
predicate). 

D Can both statements and 
transactions be optimized? If the 
optimizer can look ahead and see 
all the statements that make up a 
transaction (as may be-the case in a 
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database or stored procedure), it 
may be able to cache intermediate 
results for use later in the transac­
tion. It may also be possible to 
minimize the amount of disk I/0 
by scanning a clustered table even 
though some of the data will be 
used only by later statements in 
the transaction. 

Al FEATURES 
Optimizers are often called the 
"intelligence" of the DBMS, but 
not all of them take full advantage 
of the latest artificial-intelligence 
technology. 

D Does the optimizer use 
heuristics to eliminate plans? Dur­
ing cost-function evaluation, heu­
ristics can be used to terminate 
evaluation of the entire plan. 
These techniques allow optimizer 
time to be spent examining poten­
tially more useful plans. 

D Can the optimizer learn? 
In some sense, an optimizer learns 
if it collects and responds to statis­
tics. However, additional forms of 
learning are possible. For example, 
usage patterns can be used to dic­
tate the spread of data across de­
vices or even across data pages. 
The frequency and quantity of up­
dates can dictate the optimal ex­
tent size for allocating new pages. 
Frequent access of a column can 
lead to automatic creation of in­
dexes. Automatic reorganization of 
data is possible when a particular 
order is common or fragmentation 
exceeds a cost threshold. 

DISTRIBUTED SUPPORT 
Less centralized data, network 
considerations, and proliferating 
access paths for incoming queries 
will all become factors in the per­
formance of a DBMS's optimizer. 
Distributed systems will tax the 
optimizer's ability to determine 
(and allocate) the costs of access­
ing data. 

D Can the optimizer com­
pute distributed cost functions? 
When data is distributed, factors 
such as routing of the retrieved 
data, network bandwidth, node 
CPU speed, and possible concur­
rent or parallel processing of the 
decomposed query all become im­
portant in computing costs. These 
factors as well as the normal local 
statistics must be available to the 
global optimizer: How the . factors 
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are migrated from the local data­
base to the global optimizer is also 
important (for example, by manual 
or automatic update, on demand, 
or on an event such as storage­
space allocation). 

0 Is the optimization local, 
global, or both? Even if the opti­
mizer performs global optimiza­
tion in a distributed environment, 
it should still handle local queries 
and not depend on an access plan 
dictated by the global phase. 

D Can the user determine a 
global optimizer's access to local 
statistics? For example, can the 
propagation of statistics from var­
ious nodes be managed so that 
they occur manually, on demand, 
or on schedule? Remember, global 
optimization requires information 
not only on where data resides 
and how best to route the neces­
sary data to the user, but also 
about how to prepare that data for 
distributed access in the first place. 

0 Can the optimizer evalu­
ate parallel I/0? If the relational 
DBMS supports fragmentation and 
replication, the optimizer might 
be able to use multiple disk drives 
and controllers to process the re­
sults in parallel. Both Tandem 
Non-Stop SQL and Teradata's Ter­
adata DBC/1012 can access data 
this way. 

0 Can the optimizer take ad­
vantage of parallel processing? In 
a distributed system, the portions· 
of a query that are processed in 
parallel and those that must be 
processed sequentially can signifi­
cantly affect processing cost. If the 
optimizer doesn't model the sys­
tem properly, parallel processing 
can be more costly than sequential 
processing on a uniprocessor 
machine. 

D Does the optimizer com­
pute the cost of semijoins? The se­
mijoin is an effective means of 
joining distributed data when net­
work costs are significant. Semi­
joins should not have the same 
cost evaluation as joins. 

THE INGRES OPTIMIZER 
As noted earlier, the Ingres opti­
mizer uses a number of the tech­
niques presented here. Consider­
able effort has gone into ensuring 
that the query tree is represented 
in canonical form and that SQL is 
flattened. This is not as simple as it 

might appear. The point at which 
the optimizer decides to remove 
duplicates can introduce an order 
dependence on operations, so go­
ing to a flattened or normal form 
of the query can affect the query 
result.1.2.4 According to Ingres, all 
such flattening issues have been 
resolved in the current release. 

Ingres attempts to reduce a 
query to irreducible, simpler que­
ries by decomposition (not to be 
confused with the less sophisticat­
ed optimization-by-decomposition 
method used by the University of 
California, Berkeley, version of In­
gres10). It does this by using tuple 
substitution and detachment be­
fore the access methods are select­
ed and the search space is defined. 

Ingres uses various tech­
niques to limit the primitive 
operations and access methods 
used to define possible access 
plans; these include eliminating 
redundant nodes, recognizing re­
dundant subtrees in· the search 
space, and eliminating plans in­
volving subtrees that (heuristical­
ly) are estimated to be too costly. 
For example, if a plan involves a 
Cartesian product of very large ta­
bles and alternate plans are avail­
able that do not, these can general­
ly be eliminated; if a relation 
contains fewer than five pages, In­
gres will select a relation scan 
rather than use any primary or 
secondary indexes. 

A set of heuristics constrains 
the kinds of plans generated based 
on the operations in the query tree 
and the indexes available. Among 
the access methods considered are 
indirect join, semijoin, full and 
partial sort-merge joins, index join, 
hashed join, Cartesian product, 
projection-restriction, primary key 
lookup, secondary index lookup, 
subquery join, check-only join, re­
lation scan, sort and ISAM, hash, 
or B-tree lookup. Whether or not 
journaling is in effect on the ta­
bles, the cost function takes into 
account the storage structure be­
ing used (B-tree, ISAM, hashed, or 
heap), disk I/0, CPU usage, and a 
CPU merge factor that can differ 
from CPU to CPU. These help the 
optimizer decide between sort­
merge and lookup. 

The time spent evaluating 
the search space is controlled so 
that no further search will occur if 
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the optimizer ''believes" the plan 
it has found would take less time 
to execute than the time it has tak­
en to look for the plan. The user 
may also turn off this feature and 
enable an exhaustive search. 

Many statistics are available 
to the optimizer for computing 
cost functions. The statistics are 
collected by running Optimizedb. 
This utility maintains information 
on data values such as minimum, 
maximum, and average as well as 
number of distinct values, rows, 
disk pages, rows per page, and so 
on. It also allows the user to estab­
lish, via a histogram, the distribu­
tion of values. 

The histogram consists of 
partitions, each with a width de­
termined by the range of values. 
The height of each partition is 
simply the number of rows con­
taining values in the range. The 
user may set both the number of 
partitions and the width before 
collecting the statistics. In the cur­
rent release, Ingres can collect this 
information by sampling the data 
in a table rather than scanning it. 
This can significantly reduce the 
cost of collecting statistiq; on deep 
tables. 

The Ingres optimizer does 
not create indexes on intermediate 
results, nor does it create a histo­
gram. It does follow certain heu­
ristic rules that allow it to make 
statistical assumptions about inter­
mediate results given the input ta­
bles and the operations involved. 
Ingres also does not fully optimize 
UNION. However, its optimiz­
ation of OR compares favorably to 
most other optimizers. 

Recent improvements to the 
optimizer include removing un­
necessary nodes in processing 
sort-merge joins, optimizing func­
tions, adding multiple-attribute 
joins, and taking into account im­
provements to the buffer manager. 

Ingres refers to its product as 
an "AI optimizer'' because of its 
extensive use of heuristics and 
statistics. It is, in a sense, an expert 
system. Its recognition of opti­
mized subtrees might be consid­
ered a form of pattern recognition. 
However, it is not an artificial­
intelligence system in the sense 
that it learns or creates new rules 
based on an inference engine. 

All the optimal subtrees and· 



plans produced are cached using 
a least-recently-used algorithm. 
They may be kicked out of the 
cache if they no longer constitute 
a valid plan. For example, drop­
ping an index might well invali­
date a plan in the cache. Database 
procedures are stored as a linked 
query execution plan and can be 
invalidated. Ordinarily, a partial 
plan analysis is performed to de­
termine whether database changes 
or the parameters being passed 
might invalidate the plan. For ex­
ample, passing a wildcard rather 
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than a constant value into a Bool- 1---------- - ------'------ ---------.....J 
ean comparison can mean that an 
index is no longer viable. In this 
case, the invalidation is tempor.ary. 

The Ingres optimizer is capa­
ble of performing global as well as 
local optimization. The task of glo­
bal optimization is to determine 
on what node a partial plan will 
be executed. Therefore, network 
costs must be taken into account 
when the cost functions for access­
ing base tables or indexes are com­
puted and when the results of an 
operation on one node are sup­
plied as input to an operation on 
another node. 

The Optimiz~db utility is 
used to update statistics locally. 
Global optimization is performed 
by the Ingres Star node. The Star 
node obtains these statistics auto­
matically from the local node on 
demand, caching them until Opti­
mizedb is run again. The Star node 
sends partial SQL plans to the lo­
cal nodes for processing, where 

· they undergo local optimization. 

RETURN ON INVESTMENT 
The selection of a relational DBMS 
may in part be contingent on the 
optimizer. Balancing the overall 
capabilities of the optimizer, the 
need for performance, and other 
desirable features of the DBMS is a 
technical problem. And the more 
you know about how databases 
work, the more difficult DBMS se­
lection can be. Still, the effort is 
worthwhile if it leads to a success­
ful installation that provides a 
continuing return on investment 
over the years and doesn't frus-­
trate users and developers. • 

Tlit 11uthor would likt to 11cknouiltdgt lht help 
of Dow Kellogg, Eric Lundb/1111. and Ed Horsl · 
of Ingres Corp. 
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